On the range maximum-sum segment query problem
نویسندگان
چکیده
منابع مشابه
On the Range Maximum-Sum Segment Query Problem
We are given a sequence A of n real numbers which is to be preprocessed. In the Range Maximum-Sum Segment Query (RMSQ) problem, a query is comprised of two intervals [i, j] and [k, l] and our goal is to return the maximum-sum segment of A whose starting index lies in [i, j] and ending index lies in [k, l]. We propose the first known algorithm for this problem in O(n) preprocessing time and O(1)...
متن کاملAn Optimal Algorithm for the Range Maximum-Sum Segment Query Problem
We are given a sequence A of n real numbers which is to be preprocessed. In the Range Maximum-Sum Segment Query (RMSQ) problem, a query is comprised of two intervals [i, j] and [k, l] and our goal is to return the maximum-sum segment of A where the staring index of the segment lies in [i, j] and the ending index lies in [k, l]. We provide the ̄rst known optimal algorithm with O(n) preprocessing...
متن کاملOptimal algorithms for the average-constrained maximum-sum segment problem
a r t i c l e i n f o a b s t r a c t Given a real number sequence A = (a 1 , a 2 ,. .. ,a n), an average lower bound L, and an average upper bound U , the Average-Constrained Maximum-Sum Segment problem is to locate a segment A(i, j) = (a i , a i+1 ,. .. ,a j) that maximizes ik j a k subject to L (ik j a k)/(j − i + 1) U. In this paper, we give an O (n)-time algorithm for the case where the av...
متن کاملParallel Programming, List Homomorphisms and the Maximum Segment Sum Problem
We review the use of the Bird-Meertens Formalism as a vehicle for the construction of programs with massive implicit parallelism. We show that a simple result from the theory, concerning the expression of list homomorph-isms, can help us in our search for parallel algorithms and demonstrate its application to some simple problems including the maximum segment sum problem. Our main purpose is to...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2007
ISSN: 0166-218X
DOI: 10.1016/j.dam.2007.05.018